ImpParser用 Coq 实现词法分析和语法分析
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Strings.String.
From Coq Require Import Strings.Ascii.
From Coq Require Import Arith.Arith.
From Coq Require Import Init.Nat.
From Coq Require Import Arith.EqNat.
From Coq Require Import Lists.List.
Import ListNotations.
From LF Require Import Maps Imp.
Definition isWhite (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (orb (n =? 32) (* space *)
(n =? 9)) (* tab *)
(orb (n =? 10) (* linefeed *)
(n =? 13)). (* Carriage return. *)
Notation "x '<=?' y" := (x <=? y)
(at level 70, no associativity) : nat_scope.
Definition isLowerAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (97 <=? n) (n <=? 122).
Definition isAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (andb (65 <=? n) (n <=? 90))
(andb (97 <=? n) (n <=? 122)).
Definition isDigit (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (48 <=? n) (n <=? 57).
Inductive chartype := white | alpha | digit | other.
Definition classifyChar (c : ascii) : chartype :=
if isWhite c then
white
else if isAlpha c then
alpha
else if isDigit c then
digit
else
other.
Fixpoint list_of_string (s : string) : list ascii :=
match s with
| EmptyString ⇒ []
| String c s ⇒ c :: (list_of_string s)
end.
Fixpoint string_of_list (xs : list ascii) : string :=
fold_right String EmptyString xs.
Definition token := string.
Fixpoint tokenize_helper (cls : chartype) (acc xs : list ascii)
: list (list ascii) :=
let tk := match acc with [] ⇒ [] | _::_ ⇒ [rev acc] end in
match xs with
| [] ⇒ tk
| (x::xs') ⇒
match cls, classifyChar x, x with
| _, _, "(" ⇒
tk ++ ["("]::(tokenize_helper other [] xs')
| _, _, ")" ⇒
tk ++ [")"]::(tokenize_helper other [] xs')
| _, white, _ ⇒
tk ++ (tokenize_helper white [] xs')
| alpha,alpha,x ⇒
tokenize_helper alpha (x::acc) xs'
| digit,digit,x ⇒
tokenize_helper digit (x::acc) xs'
| other,other,x ⇒
tokenize_helper other (x::acc) xs'
| _,tp,x ⇒
tk ++ (tokenize_helper tp [x] xs')
end
end %char.
Definition tokenize (s : string) : list string :=
map string_of_list (tokenize_helper white [] (list_of_string s)).
Example tokenize_ex1 :
tokenize "abc12=3 223*(3+(a+c))" %string
= ["abc"; "12"; "="; "3"; "223";
"*"; "("; "3"; "+"; "(";
"a"; "+"; "c"; ")"; ")"]%string.
Proof. reflexivity. Qed.
Inductive optionE (X:Type) : Type :=
| SomeE (x : X)
| NoneE (s : string).
Arguments SomeE {X}.
Arguments NoneE {X}.
加一些语法糖以便于编写嵌套的对 optionE 的匹配表达式。
Notation "' p <- e1 ;; e2"
:= (match e1 with
| SomeE p ⇒ e2
| NoneE err ⇒ NoneE err
end)
(right associativity, p pattern, at level 60, e1 at next level).
Notation "'TRY' ' p <- e1 ;; e2 'OR' e3"
:= (match e1 with
| SomeE p ⇒ e2
| NoneE _ ⇒ e3
end)
(right associativity, p pattern,
at level 60, e1 at next level, e2 at next level).
Open Scope string_scope.
Definition parser (T : Type) :=
list token → optionE (T × list token).
Fixpoint many_helper {T} (p : parser T) acc steps xs :=
match steps, p xs with
| 0, _ ⇒
NoneE "Too many recursive calls"
| _, NoneE _ ⇒
SomeE ((rev acc), xs)
| S steps', SomeE (t, xs') ⇒
many_helper p (t :: acc) steps' xs'
end.
一个要求符合 p 零到多次的、指定步数的词法分析器:
该词法分析器要求一个给定的词法标记(token),并用 p 对其进行处理:
Definition firstExpect {T} (t : token) (p : parser T)
: parser T :=
fun xs ⇒ match xs with
| x::xs' ⇒
if string_dec x t
then p xs'
else NoneE ("expected '" ++ t ++ "'.")
| [] ⇒
NoneE ("expected '" ++ t ++ "'.")
end.
一个要求某个特定词法标记的语法分析器:
Definition parseIdentifier (xs : list token)
: optionE (string × list token) :=
match xs with
| [] ⇒ NoneE "Expected identifier"
| x::xs' ⇒
if forallb isLowerAlpha (list_of_string x) then
SomeE (x, xs')
else
NoneE ("Illegal identifier:'" ++ x ++ "'")
end.
数字:
Definition parseNumber (xs : list token)
: optionE (nat × list token) :=
match xs with
| [] ⇒ NoneE "Expected number"
| x::xs' ⇒
if forallb isDigit (list_of_string x) then
SomeE (fold_left
(fun n d ⇒
10 × n + (nat_of_ascii d -
nat_of_ascii "0"%char))
(list_of_string x)
0,
xs')
else
NoneE "Expected number"
end.
解析算术表达式:
Fixpoint parsePrimaryExp (steps:nat)
(xs : list token)
: optionE (aexp × list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
TRY ' (i, rest) <- parseIdentifier xs ;;
SomeE (AId i, rest)
OR
TRY ' (n, rest) <- parseNumber xs ;;
SomeE (ANum n, rest)
OR
' (e, rest) <- firstExpect "(" (parseSumExp steps') xs ;;
' (u, rest') <- expect ")" rest ;;
SomeE (e,rest')
end
with parseProductExp (steps:nat)
(xs : list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
' (e, rest) <- parsePrimaryExp steps' xs ;;
' (es, rest') <- many (firstExpect "*" (parsePrimaryExp steps'))
steps' rest ;;
SomeE (fold_left AMult es e, rest')
end
with parseSumExp (steps:nat) (xs : list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
' (e, rest) <- parseProductExp steps' xs ;;
' (es, rest') <-
many (fun xs ⇒
TRY ' (e,rest') <-
firstExpect "+"
(parseProductExp steps') xs ;;
SomeE ( (true, e), rest')
OR
' (e, rest') <-
firstExpect "-"
(parseProductExp steps') xs ;;
SomeE ( (false, e), rest'))
steps' rest ;;
SomeE (fold_left (fun e0 term ⇒
match term with
| (true, e) ⇒ APlus e0 e
| (false, e) ⇒ AMinus e0 e
end)
es e,
rest')
end.
Definition parseAExp := parseSumExp.
解析布尔表达式:
Fixpoint parseAtomicExp (steps:nat)
(xs : list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
TRY ' (u,rest) <- expect "true" xs ;;
SomeE (BTrue,rest)
OR
TRY ' (u,rest) <- expect "false" xs ;;
SomeE (BFalse,rest)
OR
TRY ' (e,rest) <- firstExpect "~"
(parseAtomicExp steps')
xs ;;
SomeE (BNot e, rest)
OR
TRY ' (e,rest) <- firstExpect "("
(parseConjunctionExp steps')
xs ;;
' (u,rest') <- expect ")" rest ;;
SomeE (e, rest')
OR
' (e, rest) <- parseProductExp steps' xs ;;
TRY ' (e', rest') <- firstExpect "="
(parseAExp steps') rest ;;
SomeE (BEq e e', rest')
OR
TRY ' (e', rest') <- firstExpect "<="
(parseAExp steps') rest ;;
SomeE (BLe e e', rest')
OR
NoneE "Expected '=' or '<=' after arithmetic expression"
end
with parseConjunctionExp (steps:nat)
(xs : list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
' (e, rest) <- parseAtomicExp steps' xs ;;
' (es, rest') <- many (firstExpect "&&"
(parseAtomicExp steps'))
steps' rest ;;
SomeE (fold_left BAnd es e, rest')
end.
Definition parseBExp := parseConjunctionExp.
Check parseConjunctionExp.
Definition testParsing {X : Type}
(p : nat →
list token →
optionE (X × list token))
(s : string) :=
let t := tokenize s in
p 100 t.
(*
Eval compute in
testParsing parseProductExp "x.y.(x.x).x".
Eval compute in
testParsing parseConjunctionExp "~(x=x&&x*x<=(x*x)*x)&&x=x".
*)
解析指令:
Fixpoint parseSimpleCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
TRY ' (u, rest) <- expect "SKIP" xs ;;
SomeE (SKIP%imp, rest)
OR
TRY ' (e,rest) <-
firstExpect "TEST"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "THEN"
(parseSequencedCommand steps') rest ;;
' (c',rest'') <-
firstExpect "ELSE"
(parseSequencedCommand steps') rest' ;;
' (tt,rest''') <-
expect "END" rest'' ;;
SomeE(TEST e THEN c ELSE c' FI%imp, rest''')
OR
TRY ' (e,rest) <-
firstExpect "WHILE"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "DO"
(parseSequencedCommand steps') rest ;;
' (u,rest'') <-
expect "END" rest' ;;
SomeE(WHILE e DO c END%imp, rest'')
OR
TRY ' (i, rest) <- parseIdentifier xs ;;
' (e, rest') <- firstExpect "::=" (parseAExp steps') rest ;;
SomeE ((i ::= e)%imp, rest')
OR
NoneE "Expecting a command"
end
with parseSequencedCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 ⇒ NoneE "Too many recursive calls"
| S steps' ⇒
' (c, rest) <- parseSimpleCommand steps' xs ;;
TRY ' (c', rest') <-
firstExpect ";;"
(parseSequencedCommand steps') rest ;;
SomeE ((c ;; c')%imp, rest')
OR
SomeE (c, rest)
end.
Definition bignumber := 1000.
Definition parse (str : string) : optionE com :=
let tokens := tokenize str in
match parseSequencedCommand bignumber tokens with
| SomeE (c, []) ⇒ SomeE c
| SomeE (_, t::_) ⇒ NoneE ("Trailing tokens remaining: " ++ t)
| NoneE err ⇒ NoneE err
end.
Example eg1 : parse " TEST x = y + 1 + 2 - y * 6 + 3 THEN x ::= x * 1;; y ::= 0 ELSE SKIP END "
=
SomeE (
TEST "x" = "y" + 1 + 2 - "y" × 6 + 3 THEN
"x" ::= "x" × 1;;
"y" ::= 0
ELSE
SKIP
FI)%imp.
Proof. cbv. reflexivity. Qed.
Example eg2 : parse " SKIP;; z::=x*y*(x*x);; WHILE x=x DO TEST (z <= z*z) && ~(x = 2) THEN x ::= z;; y ::= z ELSE SKIP END;; SKIP END;; x::=z "
=
SomeE (
SKIP;;
"z" ::= "x" × "y" × ("x" × "x");;
WHILE "x" = "x" DO
TEST ("z" ≤ "z" × "z") && ~("x" = 2) THEN
"x" ::= "z";;
"y" ::= "z"
ELSE
SKIP
FI;;
SKIP
END;;
"x" ::= "z")%imp.
Proof. cbv. reflexivity. Qed.
(* 2022-03-14 05:26:58 (UTC+00) *)